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In most references, for the great convenience in calculations, the exterior gravity potential of
the spheroidal earth is presented as a series of spherical harmonic terms. In an early part of this
paper that series is derived in full detail as a classical solution of Laplace's equation in spherical
coordinates. In a later part of the report the series is truncated at the 1/r3 terms as is often done
in the literature. It is shown that this truncation gives the potential for a rotating triaxial earth,
having small oblateness and equatorial eccentricity, with an equipotential surface. The coefficients
of the truncated series are interpreted as functions of the geometric parameters of the matching
triaxial earth model and its rotation. The harmonic coefficients, developed according to the theory

presented in this paper and measured to datefrom gravity surveys and satellite data, show that the
earth has:

ABSTRACT %

1. an oblateness of 1/298.2

2. an equatorial eccentricity of 1.14 X 10”5, which corresponds to a difference of major and
minor equatorial diameters for the earth of about 475 feet.

In addition to the harmonics contributing principally to the triaxial earth, the higher order
harmonics are interpreted in the latter part of the paper as reflecting additional small longitude
and latitude-dependent surface deviations from this triaxial earth. The effect on the earth surface
model (the geoid) of terms through J +4 18 calculated, but the longitude-dependent deviations them-
selves are left in general terms as functions of the harmonic coefficients. These latter coef-
ficients must be regarded as largely unknown except for the second tesseral harmonic J,, which
(together with J,, and the centrifugal potential) fixes the surface shape of the triaxial geoid. Longi-
tude independent (zonal) geoid deviations through J,, are calculated from a zonal potential due to
Kozai (1962), which is probably the most accurate to date.

While the details of the topography of the geoid remain to be discovered by geodetic research,
certain large-scale features appear to be discernable already. These are discussed in a later
section of this report. Except perhaps for J,, determined from 24 hour satellite data, it appears
necessary at this date to consider all longitude gravity effects as a set through at least the fourth
order in the long term applications.

Only the second order longitude gravity effect probably needs to be considered in the appli-

cations concerning the 24-hour satellite, though the effects of third- and fourth-order earth gravity
may be discernable over long periods of time.

In the last section of this report the gravity and geometric effects of the smallnutations of the
north pole are discussed. The gravity effects are shown to be entirely negligible for most applica-
tions. The geometric effects might well be discernable by close long-term study of the geoid
coordinate errors of stations used as references in the observation of earth satellites.
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THE GRAVITY POTENTIAL
OF THE EARTH THROUGH FOURTH ORDER

by
C. A. Wagner
Goddard Space Flight Center

I. INTRODUCTION

The basic purpose of this report is to gather in one document information on the earth's ex-
ternal gravity field necessary for the accurate determination of spacecraft trajectories in its
vicinity. Much of the material on the mathematical representation of the field is not new. In most
references, for convenience of calculation and because the earth itself is so nearly spherically
symmetric, the general gravity field has been developed into an infinite series of spherical har-
monic components. The first two terms of this series have been known to some accuracy since
Isaac Newton's time. In recentyears, with the results of close tracking of artificial satellites
available, many more terms of this series have become known. It seemed strange, with so much
history behind it, that in 1962 when the author began his investigations of the gravity effects on a
24-hour satellite, no single reference could answer adequately the basic question: Where does the
familiar harmonic series representation of the earth's gravity field come from? That one question,
and the attempt to answer it, gave rise to this document. But in the course of answering that basic
question other questions arose on the physical and geometric interpretation of the individual gravity
components for which, likewise, no adequate answers could be found in the literature. The inter-
pretation of satellite observations is always with respect to specific stations fixed on the earth's
surface. The form of that surface, called the geoid or mean sea level surface, is a reflection of
the mass distribution of the earth beneath it just as the gravity series is. Thus the problems of
accurate orbit determination and accurate ground station locations are interrelated. Their
common point of departure is the geometric (geoid) interpretation of the terms in the gravity
field. These are just some of the additional questions about the field which are important in
the applications to geodesy and satellite orbit determination and for which answers are given
in this report.

For example, in the last section of this report the gravity and geometric effects of the small
nutations of the north pole are discussed and calculated, so far as is known, for the first time in
the literature.




Il. THE GRAVITY POTENTIAL AND THE GRAVITY FIELD OF THE EARTH

In this study we are interested fundamentally in determining the exterior gravity force field of
the earth in a form most efficient for the calculation of the trajectories of small bodies in the
vicinity of the earth. In Figure 1 the earth is represented by an extended domain, D_, in the space

X,s X,y X;. The gravitational force exerted by
X3 the small mass dm in the extended earth domain
D, on a particle of unit mass at P is, from

P{xy,xz,x3)

Newton's law of gravitation,

- Gdm

(Eﬁe)l’ - p2 P (1) ;

where G is the universal gravity constant |
(= 6.67 x 10"8 dynes-cm?/gm?). The total
gravity force of D_ on the unit mass at P is the

integral of Equation 1 over p_,

-d_F.. =-Gdm {;\
on a vnit p2
mass at P - -Gdm
. . ( Fe)P - J ,02 P (2)
Figure 1—The gravity force field of the earth. P,

The unit vector 7 can be decomposed as follows:

X, (%, _‘51) *R, (x2—§2) * Ry (x3—§3) )
172
{(Xl “6y)P (% m€,)" (x3—§3)2}

>
|
ol

Thus Equation 2 can be rewritten as the vector equation

®3)

- —GJ' {’zl(xx_gl)+§‘z(x2—§2)+’?3(x3—§3)}dm.
) D, {(xl—él)2+(x2—§2)2+(x3~§3)2}3/2

Equation 3 implies that the three scalar equations for the (F,), ,(F,), and (Fe)x3 coordinate com-
1 2
ponents of total attraction,(F,), = (F.), %, +(F.), &,+(F.), %,, are
1 2 3

. (xi-gi)dm
(FE)"i GJ’DB (xl_§l)2+(x2—§2)2*(x3_§3)2}3/2

:—GJ m i=1,2,3 . (4)




For an arbitrary mass distribution in D, it would be extremely cumbersome to compute the gravity
field through the three triple integrals of Equation 4. For most applications it is far more desir-
able and instructive to compute the field with a single intermediate scalar function v, called the
potential, whose easily computed gradient (W = R, 9V/ax, +R, 9V/ax, + R, aV/3x,) gives the force
field represented by Equation 4. The gravity potential of D, at P, (V,); is defined by the scalar
triple integral

fem = - 5)

R
elp T = G 172
R R e,

Note this implies that each small mass contributes d(ve)P = Gdm/p to the total potential. For
example, the scalar potential of a point mass, m, on a unit mass at o from m in space is

v =%- (6)

The gradient is a variation of the field with respect to the coordinates of the field point only
and is therefore independent of the limits of integration for the domain p_. Thus the V operation
can be taken on the integrand and the gradient of Equation 5 with respect to the space coordinates
of the arbitrary field point P is

W = V[ S o] wv(}) @

e e

But

and

6(1/P) - _{ )2+ (x,76,)% * (x5 —53)2]-1/2 [2(xi-§i)]}

—-(x. - €.
:__(___l.;g_l_), '1:1,2’3_ (8)




or

+£2‘:—Gj —_4(x2—§32)dm]+§3 —G‘[ —_——_(x3-§33)dm . 9)
D o D P

T 3A ’ i= 1,23. (10)

From Equations 10 and 4 the components of the gravity force and gravity potential gradient vectors
are identical:

e = (F), . i=1,23. (11)

Thus the problem of finding the vector gravity field of the earth has been broken down to the simpler
problem of finding the single scalar gravity potential of the earth (Equation 5). The three gradient
derivatives of this scalar function will be the coordinate components of the vector gravity force
field (Equation 11).

lll. THE EXTERNAL POTENTIAL OF THE EARTH
AS AN INFINITE SERIES OF MASS INTEGRALS

In determining the gravity potential of the earth at P from Equation 5, there are three methods
of proceeding:

1. If the precise nature or form of the mass domain of the earth is known or can be assumed,
the elemental potential Gdm/o can be expressed in accordance with this form to allow an exact
integration of Equation 5. In such a manner Newton first proved that the external gravity potential
of a spherical mass whose density is only a function of distance from the center of mass (c.m.) is
given simply as

(M)p = M'r (12)

where Mis the total mass of the extended sphere and r is the distance from the c.m. of the
sphere to the field point P. In other words, Equation 12 states that an extended earth of
radially symmetric mass distribution can be treated as a mass point with a simple central




force field given by

(F)p = -— ¢ - 13)

Since the real mass distribution of the earth can be closely approximated by such a spherically
symmetric mass domain, the exact form of the earth's potential is Equation 12 with small, but
important departures which depend, in general, on all three coordinates of the field point inde-
pendently and not just the distance from the c.m. of the earth.

2. In the general case of a nearly spherical mass domain the integrand of Equation 5 can be
expanded in an infinite harmonic series of terms in /" (n = 1, 2, 3, --). Integration of the leading
term (1/r) will give the dominant spherically symmetric part of the potential. The remaining
series, integrated term-by-term with respect to the domain p_, will give mass integrals of small
order related to the nonspherical part of the mass distribution.

3. In the general case of an arbitrary domain the indicated mass integration over the domain
in Equation 5 for v_ can be replaced by a differential equation which V_ must satisfy independently
of the nature of the domain. The solution of the differential equation in spherical coordinates as
an infinite series of spherical harmonics will yield the same series solution as in method 2. But
in this case, the coefficients of the series will be arbitrary. Spherical coordinates are chosen to
give a series whose first few terms approximate well the nearly spherically symmetric earth. The
form of this series is also convenient for calculating the perturbations of nearly circular satellite
orbits, as well as displaying the gravity field on the earth's nearly spherical surface. The coef-
ficients themselves can be related to the integrated mass ﬁroperties of the earth by matching
term-by-term with the solution from method 2 (see part VI). A large number of coefficients of

this series have been determined to date by many kinds of geodetic measurements which essentially

map and sample the gravity field over the earth's surface (gravimeter surveys and astro-geodetic
survey mappings) and in space (satellite perturbation studies).

Proceeding with the direct integration of Equation 5 (see Figure 1), we note from the law of
cosines that
p? = £2 + 1 - WUrcosy ,
or

p = r{1+(§/r)2—2(5/1")005\11}1/2 . (14)

Equation 14 in Equation 5 gives (noting r is independent of D, )

(v.)p = %J dm[1+(5/r)2—2(§/r)cos¢]'1/2
D

e

-1/2
a1 G i 2—1({")@)—“0 : (15)




It is evident from Equation 15 that for field points far from the earth (assuming the center of ca-
ordinates is somewhere inside the earth), (V)i (.. fromthe caren - M,/r. This implies the earth acts

as an effective point mass (independent of the exact nature of its mass distribution) at a point suf-
ficiently far from its vicinity.

For exterior points P for which (£/r) <1, since 2(&/r) cosy/1 +(&/r)? <1, the integrand of
Equation 15 can be expanded into two convergent binomial series, yielding

£y 2 5y 2
(Ve)P = gJ.D dm 1“(r2) SRR 1+(§)cos¢/[1-(§) +---]+ 3(5) cos 2y [1_2(_?) +]

A feaef ] b s

Collecting terms of Equation 15a in powers of (¢/r) gives

f 2
G - 3
e = B, i (Beosse INNIRPINE S 6)
D
If the origin of coordinates is the c.m. of the earth,

J dn[£cosy] = 0 (17)

e

from the definition of the c.m. of a body. This property is independent of the kind of body-fixed
coordinate system chosen. Thus, for orthogonal axes x!, xj}, x;' with origin at the c.m. and x}
oriented along 7 to the field point P, £! = £cosy, and fD dm(£ cos y) = J; ¢&ldm = 0. Also note
from Figure 1 that ¢ )

J Eldm = I, , (18)
D

e

the total moment of inertia of the mass of the earth about its center of mass (c.m.). This quantity
is independent of the field point P, In addition note that

J dm(& siny)? = . ., (19)
D

e

the moment of inertia of the earth about r. This quantity is a function of the direction of P from
the c.m. of the earth, but not its distance. Integration of Equation 16 term-by-term with the




resylts of Equations 17, 18 and 19 gives the first two mass integrals of the external gravity poten-
tial of the earth as

| Me 21 - 3I, 4
i e - ol T} 0

T

I_ can be shown to be a simple function of the direction of P from the c.m. and the three principal
! moments of inertia of the earth.

For example, let x,, x,, x; be principal c.m. fixed axes for the earth and A, B, C be the cor-
responding principal moments of inertia for the earth defined as:

.

A = dm(£ 2 +£2)
JD

B - dm(;’ll +§32)
uDE :
~

Cc = dm(g]Z +§22)
Jp

But from the law of cosines

2 2 _ 52)2
1, = L £% sin?y dm J ¢? (1-cos?y)dm j dmﬁ’[ —5—14—5%)*}

gRreF e exextoxd —(x=6,)2~ (x,75,)7 - (x; “53)2]

2122 402
4(x2+xf +x2)

Ir = J dm 512+§22+§3 -
D

e

£ \2
D L

x2+ 2+x-
. 1 X2 3

_ J dm‘: (§2+§ )+x (§12+§32) (§2+§ ) (x "25 FREISEN §x§3+"2"3>2§3)jl .
D

r2
< ‘ . (20a)
But, for principal axes of inertia x,, x,, x;,
J &, &, dm =J- £155dm :J. §263dm = 0
De De De
and therefore
1 = [A(xl)z + B(x,)’ +C(x3)2]/f2
= A2 + Bm? + Cn? | (20b)




b

where £, m and n are the direction cosines of P from the ¢.m. of the earth with respect to earth-
fixed principal axes of inertia. From Equation 18 we have:

f

21,

N} =

2j (g2 463 ved)an - 2J |
D D

e e

(s2+e2) 5 (6pve2) v (s2+e2)]am

= A+B+C . (20c)

For a spherically symmetric earth mass distribution

and from Equations 20c and 20b, 2I, = 3A and

31, = 3 [A(xl)2 +B(x,)? +C(x3)2]/r2 = 3A [(xl)z (xg) (x3)2]/r2 = 3A (20d)

(for a spherically symmetric earth). Thus from the above results in Equation 20 it is seen that the
1/r3 term of the gravity potential is zero for a spherically symmetric mass distribution. Thus, for
a triaxial spheroidal earth, not differing greatly from a spherically symmetric mass domain, the

second term of the potential function, Equation 20, will be close to zero even for field points in the
near vicinity of the earth. The same argument can be made for the higher order terms of Equation

20. These can be shown to measure earth mass deviations with planes of symmetry not necessarily
orthogonal.

A summary of the development of the gravity potential of the earth thus far shows:

1. The first term (the 1/r term) of the infinite harmonic series of mass integrals of the
gravity potential of the earth gives the effect of the earth's mass distribution concentrated at a
point.

2. The second term (the 1/r3 term) gives the gravity effect due to the deviation of the earth's
ellipsoid of inertia from a sphere. The 1/r? term in the potential is absent if the c.m. is the center
of the coordinate reference.

IV. THE EXTERNAL GRAVITY POTENTIAL OF THE EARTH
IN TERMS OF LAPLACE'S EQUATION

The Gravity Potential as a Solution to Laplace’'s Equation

The operator V2 ( ) of a scalar function ( ) is defined as

9% (>, 9

+ —

dx? 3 x.2 dx2

»
—~
!v
QL
~
~
~

vz() =




Taking V2 (Ve)P in Equation 5 and noting that this operation is independent of the manner in which
the mass domain D_ is integrated gives

v2(Ve)p = V2J % = GJ dva(l/p) ) (21)
D D
But
B - BOL AW S
axl2 axz 6X3
and
(@Q@) 3(1/p) 96
a1y _ PN |30 ox,
aXAz - axi - axi
{ ol 25}
= a pz 1 i
ax.
= ~a|:p_3 (x; '51)]
- Ix;
= e 3(x mE) e = 01,2,3
Thus
VE(Vp) = 307+ 378 {(xy £, ¢ (xy m 6 ¢ (x, <€))7}
= -3p73 +3075p2 = 0

Thus since the integrand in Equation 21 is zero at every mass point (&,5 €, £;) in the domain D_,
the integral is also zero. Therefore, the exterior gravity potential (where 0 >0 everywhere, and
assuming no singularities in the potential at P) must satisfy Laplace's Equation,

V2 (V)e = O . (22)

(See Reference 1, Section II for a more complete discussion of the derivation of Equation 22 and the
mass integral potential series, Equation 20.)



The External Gravity Potential as an Infinite Series of Spherical Harmonics ’

From the suggestion of part IIl, since the earth is nearly spherically symmetric in form,
solutions of Laplace's equation in spherical coordinates will be developed; and the number of terms

P [¢1Llr ]
X1+ X2+ X3

Figure 2—Domain of the earth and coordinate systems.

necessary to obtain an accurate gravity field
for most purposes will be a minimum. (El-
lipsoidal coordinates would require fewer terms
for accuracy but they would be computationally
more cumbersome.)

Consider body "D_ " with the origin of

coordinates x,, x,, x, fixed inside "D ", and

the exterior field point P specified by spherical
coordinates ¢, L, r (Figure 2).

In general orthogonal coordinates q,, q,, q;

o1 )9 |9% ey
VIV 2 9,9, {aql[ol aq,]

p 0 (A% v | 9 (A% av il g
da, | Q, daq, +aq3 Q; Jda;

where ds, = Q, dq, , a small line element in the direction of increasing q; coordinate at P, all other
coordinates being constant (Reference 2, pp. 173 and 175).

From the spherical coordinates of Figure 2 the following terms are identified:

d5¢ = rcosLdy, implying Qd> rcosL
ds;, = rdL, implying Q. 2 r
dsr = 1dr, implying Q, = 1 .

With these identifications in Equation 23, Equation 22 becomes

1 oV

1 d J v E) GV] i
rzcosL{W[cosL %] 30 [cosLﬁ]+ 3 [rzcosLﬁ } -

Expansion of this equation will give

1 1 52V Va_ ﬂ] i 2(3_V> ~
rZCOSL{COSL6¢>2 t oL [COSLGL t cosLgp (r ar - 0,

10




or,

1 9 aV) 1 3 ( av ', 1 92V
e 2 = —_ — —_— -
3 ar (‘ 9t ] ¥ (2 cosr AL \OSLGL T 1T 07T a2 0. (24)

To separate variables, assume

V = R(r)HL)®() . (25)

Substituting Equation 25 into Equation 24, taking the indicated partial derivatives, and rearranging
terms will transform Equation 24 to

Hp 4 JR M J JH RH 3te
12 ot (r2 3—r) "2 cosL 9L (COSL W) r2cos?L a2 o (26)
Multiply Equation 26 by r2cos?L to get
i JdH 29
H<1>ccoszL:%:(r2 g—}:)'fRd)cosL;I (congf)JrRsz)z = 0. (27)

Next divide Equation 27 through by ReH to isolate #(¢). Equation 27 now becomes

cos?L 4 dR cosL 4 OHY\ _ _
o e (2 55) S ot (eos1 9L ) - B 0 T (28)

T 9r

Small m is a constant (to be determined later) since the far left-hand side of Equation 28 is a
function of r and L only, while the right-hand side, (- 1/@ 32 ®/a¢$?), is a function of ¢ only.

From Equation 28

which implies

®(¢) = Kqcosm{d-dy) , (29)

where K and ¢, are constants of integration. Since V must be periodic at least every 2~ radians,
and cosm(¢ -¢>o) = cos [— m(d) —¢o)] , it is necessary and sufficient that m be restricted to all positive
integers including zero.

11



Dividing Equation 28 by cos? L and rearranging terms allows one to isolate H and R. Equation 28

now becomes

oH m? _ 1 9 JR B
cos L 9L (COSLX)_ - —*§7<r25;) R B (30)

where q is a constant (to be determined later), since the far left-hand side of Equation 30 is a
function of L only and the near right is a function of r only.

From Equation 30

19 IR\ _
®ae (2 5e) - a. (31)
and also
1 S oy m'
HeosL oL \®>slgr)~ 27 = ~ ¢~ (32)

The independent variable in Equation 32 is transformed from L to x by setting x = sinL. Now

d( ) _ d()dx _ 4 ) .
dL. ~ “dx dL cosL =gy >
and
cosL B (1—x2)1/2, cos?L = 1 - x?, etc. (33)

In Equations 31 and 32 let q @ n(n + 1), where n is also a constant which will be determined later.

With these changes Equation 32 becomes

1 d dH 2 -
Fa - B2 cheen =0 (34)

Note that the partial differentiation in Equation 32 is equivalent to total differentiation since only
one independent variable (L) is involved.

Expanding Equation 34 and multiplying through by H gives

2 2
(l—xz)dH—2xg%+|:n(n+l)— uk ]H 0. (35)

dx? 1-x2

12




Equation 35 is recognized as the associate Legendre equation. It has applicable solutions

(Reference 3,

: d"P_ (x)
e pp. 311-313) (36)

H_ = D, (1-x?)2

nm

The P_ (x) are the well known Legendre polynomials (Reference 3, pp. 305, 306, 312 and 313), and
m and n are non-negative integers withm<n. H__refers to the harmonic of order n and power m.

n
Other solutions of 35 are possible when n is or is not an integer if |x| 7 1. But |x] = }sinL] <1
ior ihe exierior space surrounding the earth, and the other solutions are thus not admissivbie. They

give infinities for |x| = 1 (Reference 4, pp. 192-194 and 199).

The polynomials P_ (x) take the form

P oxy = 2! {x“ Cne-DXE an D (-2 (n- 3t } . 37
n 2" (l’)!)2 (2 )(1‘.)(2’1—1) (22)(2!)(2?1—1) (211_3)

: It may be noted from Equation 37 that if n is not an integer, the polynomial series becomes infinite
! and complex and thus is not applicable to the solution for v. A full treatment of the derivation of
the Associated Legendre Functions H__ can be found in Reference 13. The H_ are there shown to
be a complete, orthogonal set of functions giving the only finite solutions to Equation 35 for |x| £ 1.

In particular, the first six polynomials are:
P, (x) = Py(sinL) =1
P, (x) = P (sinL) = sinL

1
P,(x) = P,(sinL) = 75 (3sin?L-1)

[y

P, (x) = P,(sinL) = 5 (5sin3L-3sinL)

P,(x) = P,(sinL) = (1/8)(35sin®L-30sin?L+3)

P, (x) = Pg(sinL) = (1/8)(63sinL+70sinL+15sinL)

P, (x) = Pg(sinL) = (1/16)(231sin®L-315sin*L+105sin’L-5) . (38)
L To determine the variation in r, in Equation 31 we setq = n(n +1) and expand to get
i r2 Z;R+2rg§»n(n+1) = 0 . (39)

Equation 39 is a "Cauchy"” equation (Reference 4, p. 199) whose general solution is

R(r) = A;r"+ A, ro(ntl) (40)

13




If (as is conventional) we arbitrarily stipulate that V_~-0 as r~®, then A, must be set equal to zero
to avoid the infinities from the first term in Equation 40 for n>0 and to avoid a finite v, as r-®

for n = 0.
When one combines Equations 29, 36 and 40 and formulates new coefficients F,_ and ¢, one
obtains the series solution of Laplace's equation in sperhical coordinates (for v_) as
<& d™P_ (sinL)
-(n+l) m S — -
ZZF""’ r cos™L d(sinL)" cos m(d) qbnm) . (41)

n=0 m=0

The potential field of Equation 41 is usually separated into zonal (m = 0) and sectorial-tesseral
(or longitude) terms (m 7 0):

®

d™P_(sinL)
= —(n+ H n
v, = E F,, £ ®™*DP, (sinL)+-- E E F,.r "*Vcos"L ——————— d(sinLy" cos m(¢—¢>nm). (42)

n=0 n=1 m=1

The sectorial terms of Equation 42 are those of m # ¢ for which n = m. The tesseral terms (dis-
tinguished from the sectorial terms) are those of m 7 0 for whichn 7 m. The ¢ represent the
location in the space (¢, L, r ) of the principal plane of longitudinal mass symmetry for the nm
harmonic (m 7 o).

V. MATCHING THE FIRST TWO MASS INTEGRALS OF THE POTENTIAL
WITH THEIR EQUIVALENT SPHERICAL HARMONIC REPRESENTATIONS

The series in Equation 42 terminated at n = 2 will give

1
Ve T T

e

1 1
Foo 1 —2 [F sinL +F,, cosL cos (d)—dv“)] + : [3F22 cos? L cos 2(qb-<,b22)

F 3F 4
+% (3 sin2L_1) + 221 sin 2Lcos(d>—¢21)] + order (_f.) b oaee . (43)

Consider the potential of a finite continuous distribution of matter at a point far enough from
the distribution that the radius from the origin of coordinates to the field point is greater than the
radius to any part of the distribution. If the origin of coordinates is taken at the center of mass of
the distribution, it was shown (in Section III) that the expansion (1/p) in Equation 15a is absolutely
and uniformly convergent, which justifies the term-by-term integration in Equation 20 to give
the result

G .

v, M, (21,-31,) £\
s k2r3 =~ + order (T) toes
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« The discussion of the physical significance of the coefficients of Equation 43 is simplified by
considering axes X,, X,, X, corresponding to the principal moments of inertia A, B and C of the
mass distribution (Figure 2).

For the field represented by the mass-integrals of Equation 20, the expansion in harmonics of
Equation 43 is equivalent to the mass-integral harmonic series of Equation 20 if and only if

Foo = M. (44)
1 _
G [Fm sinL *F, cos L cos (¢»-d>u)] = 0, (45) !
Fao 3F,, G(2r,-31,)
— (SSinzL—l) 5 [sinﬂ,cos (¢_¢21)]+3Fzz cos?L cos 2(¢’¢22) = ———5 ' etc. (46)

Equation 44 gives the familiar GM_/r potential term which, if it were the only term of the series
present, would state that the whole mass of the earth, M_, acted effectively at its ¢c.m. Equation 45
implies that F,, = F,, = 0 since the two terms are linearly independent. The following new constants
are defined

(le)o = —2(2_",—l cos ¢, , (Fzz)o = G cos,, .,
F F

(on)o - % ’ (F22)1 = % sin2¢,, . (462)
3F21 '

(F21)1 = Tog siné,,

To facilitate the term-by-term matching of Equation 46, transform back to rectangular principal
coordinates x , x,, x,, Where

rcosLcos¢ ,

ad
n

r cosLsin¢ ,

o
i

r sinl . (47)

w
!

Expanding Equation 46 and introducing the new constants and the transformation of Equation 47,
makes Equation 46 become

+ =
2
2 r?

(Fa0)o [(3 *a)* _{(xl)z ) (x")z}] 2(Fy)o X1 ®s AFa)i 2 %5 3F 22)o [(x‘)2 - (xz)z] 6(Fz,), X, X, 20, - 31,
2 * * 2 * 2
(472)

r2 r? r r
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But, from their definitions (Equations 20b and 20c),

2L, = (A+B+C)

(47b)

and

I = . (47¢)

Equation 46 thus becomes (with Equations 47b and 47c in 47a)

("1)2 |:_ (F220)0 + 3(F22)0] * (x2)2 |:_ (1:2# _3(F22) oj\ + (x3)2 (on)o tx, %, [G(Fn) 1] X)Xy [2(F21) 0]

R P R

Since all the terms in x; x; on either side of the equality in Equation 48 are linearly independ-
ent, the only way Equation 48 can be satisfied identically for all sets of x,, x,, x; with non-zero
coefficients is for

i (l%o)_o ), - EISW (49)

) (F%o)_o Ca(r,y), = S (50)

(F,y), = B %O (51)

6(F,,), = 0., which implies ¢,, = 0° or 180° . (52)
2(F,,), = O (53)

2(F,,), = 0. (54)

Thus, Equations 52, 53 and 54 determine (F,,), = (F,,), = (F,,), = 0.

Substituting (F,,), from Equation 51 into Equation 49 determines (F,,), as

(Far)o = - (55)
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It may be verified that Equation 50 is satisfied identically with (F,,), and (F,0) o given by Equa-
tions 55 and 51.

Therefore, with respect to (r, L, ¢), or with reference to the principal axes of the mass dis-
tribution, the potential (Equation 43) becomes

@, M (on)o . £\
vV, = T+ ? [—2— (3 sxnzL—l) —3(F22)0 cos?2L cos 2¢| + order (?) t oo - (55a)
In terms of the coefficients of Reference 5 this may be written as
GM_ J _ _ 4
V, = % {1-*% (a/r)? (3sin2L-1)—3_]22(a/r)2cos2Lcos 2% + order (é:—) + e+« - (56)

The constant a will be defined later as a mean equatorial radius of the model earth ellipsoid.

In Equation 56 (from E;luations 51 and 55 in Equation 55a)

_ (on)o . 2X-(A*B) | (57)
JZU M3 (;)2 me (Z)Z
and
F _
J,, = ( 22)0 _ A-B . (58)

M (@) M, (a)?

Equations 57 and 58 thus provide links between the gross mass properties of the earth (its principal
moments of inertia) and its external gravity field. In fact, the oblateness of the earth (measured by
2C - [A +B]) is known more accurately from satellite determinations of j, than from direct surface
measures of oblateness by astronomical observations of the change of latitude with distance north.
Similar links can be established between the higher order gross mass properties of the earth and
the higher order coefficients of the external gravity field. In part VII these coefficients will be
linked to the surface geometry of the geoid, or mean sea level of the earth.

The gravitational equipotential of Equation 56 with the higher order terms neglected and a
centrifugal term added will be shown in part VII to give essentially an ellipsoidal surface if J,,
and J,, are sufficiently small. j, andJ,, may then be determined as functions of the rotation,
oblateness and ellipticity of a model triaxial-ellipsoidal earth whose surface would be at mean sea
level.

Two questions remain to be resolved before giving geometric (geoid) significance to J,, and
J,,- The first concerns the validity of ignoring the 1/r? term in the gravitational potential for
those field points (i.e., on the surface of an eilipsoidal earth away from the equatorial major axis)
for which some of the mass distribution is farther from the origin than the field point. The infinite

17



series of harmonic functions in Equation 41 is the general solution of Laplace's equation with the
boundary condition v_ (r ~®) = 0 and represents the potential at all points exterior to the surface
of the mass distribution. (See Reference 1, Chapter II, for a rigorous proof of this statement.) But
at points more strongly exterior to the surface the direct integration by series for the potential
shows that the 1/r? term is absent for the choice of origin at the c.m. The numerator of the 1/r?
term in the harmonic series of Equation 41 is a function of L and ¢ only. On a radial line, there-
fore, it is constant. Since it is zero in the outer region, it is zero everywhere to the surface be-
cause the inner region to the surface can be completely covered by radial lines from the enfolding

outer region.

(NORTH POLE)

ELLIPSOIDAL EARTH
MODEL

A
r

Figure 3—The triaxial geoid's geometry.

The second question concerns the orientation
of the x |, x,, x, principal axes of inertia in the
earth. Let us assume the earth is spun about
an arbitrary axis in inertial space. From Ref-
erence 5, pp. 377-378, it is shown that for a
rigid body such an initial rotation is invariable
in the absence of external torques if, and only
if, that initial spin axis is a principal axis of
inertia. Astronomical observation shows that
to a high degree of accuracy the earth's north
pole spin axis is invariable in direction in
inertial space after accounting for all external
torques. We can thus arbitrarily (between x,
x, and x;) identify x, as the polar axis of ro-
tation of the earth. In the model to which the
simplified series in Equation 56 belongs, L cor-

responds to geocentric latitude with respect to

the c.m., and ¢ is the geocentriclongitude measured counterclockwise (looking down on the north
pole) from the principal axis x, on the equator (Figures 2 and 3).

VI. MATCHING THE LEVEL SURFACE OF THE SECOND-ORDER GRAVITY AND EARTH ROTATION
POTENTIAL TO THE SURFACE OF AN ELLIPSOID OF THREE AXES (THE TRIAXIAL GEOID)

In this section we will show that the mean sea level surface of the earth, the geoid, is, to second
order, an ellipsoid of three axes. Arbitrarily the x
axis of the triaxial ellipsoid.

, axis is taken along a, the semimajor equatorial

In the ellipsoidal earth model of Figure 3, e is the ellipticity of the equator and f is the polar
flattening; and in terms of a, b, and c, the half axes of the ellipsoid,

- (59)
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c a-c
f = 1 - = — 1 (60)
a a
where
- at+b
a = (61)
2
AMmccndlocn s O mood £F o obaidom ser bed mmcrmcimed AaliomIllme e ~ mand T PSR S PR
\L{uatliGiis vu iU Ui al'® aluidaly Gut COnRVCIii€liu definitions of [ and a ) The surface of the el-

lipsoid in Figure 3 is given by
x\2 /x.\? x,\2
GG () - ©)

In terms of the coordinate transformation of Equation 47 the surface is also given by

x; = RcosLcos¢
X, = RcosL sin¢
x; = RsinL , (63)

where R is the radius to the surface of the ellipsoid.

Combining Equations 62 and 63 produces

cos2Lcos2¢ cos?Lsin?2¢ sin?L

a? * b2 T VR* . (64)
Multiplying Equation 64 through by b2, solving for b/a from Equation 59 and rearranging makes
Equation 64 become

‘2
(1-e)? (coschosz¢) + cos?Lsin2¢ = b’(i - sn L) . (65)

Next solve for c? from Equation 60 and introduce this into Equation 65 which then becomes

b2 a2 in2
(1-e)2cos?Lcos?2¢ + cos2Lsin?¢ = -;_z[‘;“z_ (§11r—l—fl;2:| ’ (66)
A combination of Equations 59 and 61 leads to
2 - 2
MR
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Upon the substitution of Equation 67 into 66 this equation now becomes

- in2
—\2 (l—e)2coschos2¢+C052Lsin2¢>+M
ay (2-e)(1-£)?
a) - (68)
2(1-eyf?
5=
When Equation 68 is somewhat simplified, it takes the form
1 %(Z-e)Qcosstin2¢ in?L
— _ 1 sin
(a/R)? = Z (2-e)?cos?Lcos?¢ + (1-e)? — 1 (1-1e : (69)
Two factors from terms in Equation 69 are now expanded to give
2-¢e]? .
1=l = (4-4e+e?) (1+2e+3e2+-+:) = 4+4e+Se?, for e<<1, (70)
and
(1-£)"2 = 1+ 2f + 3f% , for f<<1 . (71)
With the approximations of Equations 70 and 71, Equation 69 becomes
(a/R)? = % (2-e)2cos?Lcos?¢ + % (,4+ 4e + 5e2) cos?L sin%¢ + (1+2f +3f2) sin?L . (72)

Equation 72 describes the surface of the triaxial ellipsoid to e? and f? in the equatorial ellipticity

and oblateness (polar flattening). On the surface of the rotating earth ellipsoid the centrifugal force
per unit mass is

E, - (B) e - ae),e (19)

where v is the surface velocity at r’ from the axis of rotation of the earth, and «» is the rotation
rate of the earth. The force field of Equation 73 is derivable as the gradient (Vv = £' ¢/ar') of a
potential function of r':

(VC)R - 2 ) (74)
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The centrifugal potential at the surface of the ellipsoid is thus given as

-

f

w? w?
) {(xl)2+ (XZ)I]R = ) [choschos2¢+chosstinsz] N

Vele

= % R? cos?L . (75)

RBRv combining Fquations 56 and 75, the full potential at the surface of the ellipsoid can be ex-

a\3

@ [a  a (RY T2 (3 , _5_)3
ot = v, - 2@ e 22 B oy, (esticnn]. o

l

where

(1)

Next, the assumption is made that the surface of the earth ellipsoid is a level potential surface
of constant amount C,, where (from Equation 76)

a

a 2 J a\3 a\3
c, = — i+‘2—\‘;—) cos?L -~ 5 (_R_) (3 sinzL-l) =3J,, (E) cos?L cos 243] . (718)

Solving for R from Equation 72 will give

-1/2
_ 2 _ 52 ~l !
R = a{}+(—e+ %)coschosz¢+(e+ —:;—)(‘052Lsin2<1>+ (2f+3f2) sinzL‘l ,

which can be simplified by neglecting all terms in e and f above first order. This simplification
leads to '

-1/2

R = E[l-ecoschos2¢+2fsin2L] (79)

The following expressions are then obtained by an expansion of Equation 79 (to first order in f and e):

R = g(l"’ % cos?L cos 2¢—fsin2L) : (793,)
R! = (a)'! (l - % cos?L cos 29tf SinzL) , (80)
RZ = (a)? (1+ecoszLCOS 2¢ - 2f sinL) (81)

21




and

RP = (a)3 (1 + 3—28 cos?L cos 2 - 3f sin2L> : (82)

\

When Equations 80 through 82 are substituted into Equation 78 and the second-order product terms
in J,,, J;,, €, f and a are ignored, Equation 78 takes the form

GM J
C, - ?[l-%coschos:zthfsin?LJr% (l—sinzL)-'% (3sin2L-1)—3]22cos2Lcos 2<¢>]. (83)

In order for Equation 83 to be an identity for all L and ¢ on the surface of the earth ellipsoid, the
following conditions must be satisfied:

J
o » 25 @
_%_3J22 =0, (85)
a 3
f-—2_—2J20 = 0 . (86)

The existence of the geometric-potential compatibility Equations 84-86 establishes approximation
of the surface equipotential of second order gravity and earth rotation as a triaxial ellipsoid. From
Equation 85 it is seen that

J,; = -~ ¢/6, (87)

and from Equation 86 the gravity potential constant J,, is identified as

a
Jao = 373" (88)

Expressions 87 and 88 give approximate physical interpretation to the harmonic coefficients in the

potential of Equation 56 as functions of the small parameters of the model earth triaxial ellipsoid
and its rotation.

This now allows us to describe the geometry of the earth model and identify axes x, and x, from
satellite and surface derived values of J,, andJ,,.

According to Kozai (Reference 7) and Wagner (References 8 and 11) the best values of J,,, J,,»
GM and a are

Jo = 1.08248 x 1073 (Kozai) , (89)
J,, = - 1.9x 10 (Wagner) . (90)
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From O'Keefe, Eckels and Squires cited in Reference 5, the following constants are obtained:

GM = 3.98603 x 105 km3/sec? (Kozai)
(91)
a = 6.378165 x 10% km
w =T .7292115 x 10”4 rad/sec (from Reference 9) (92)
Therefore, from Equations 91 and 92 in Equation 77
a = 3.46165x 1073 . {92a)

Solving for the oblateness (polar flattening) of the ellipsoid model from Equation 86 with the con-
stants of Equations 89 and 92a gives

f =1.5x1.08248 x 103 + .5 x 3.46165 x 10~3 = 1,/298.24. (93)
Similarly, a solution for the equatorial ellipticity from Equation 85 with J,, given in Equation 90
will give
e = 11.4x 1076 . (94)

The difference in major and minor radii of the elliptical equator of the model triaxial earth can
now be found. From Equations 59 and 60

a(l-ey-b = 0, - (95a)
at+tb = 2a. (95b)

Solving Equations 95a and 95b for a and b will show that

a = 25/(2—e) ,
2a(1-
b = _ag_e_el (96)
Therefore, from Equation 96
2a ae -
a-b = 2a—ee T 1-e/2 - 2 (97)

With the results of Equations 91 and 94 in Equation 97 the difference in major and minor radii of
the elliptical equator is calculated as 235 feet.
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The order of the principal axes of inertia x |, x, and x; is established by the signs of J,, and
J,, in addition to their relative magnitudes. Since J,, is negative, from Equation 58 it can be seen
that B>A. Also from Equation 57, since J,, is positive, 2> (A+B). Therefore since B>A, 2C> 24,
or C>A. The axis of minimum moment of inertia, x,, is thus established. On the earth ellipsoid
(Figure 3) this is the major axis of the equatorial ellipse. (Note also for J5, <0, e>0 from Equa-
tion 85 and therefore a>b from Equation 59.) To establish the probable order of principal axes x

2
and x,, consider the earth ellipsoid as homogeneous. Then (from Reference 6, p. 292)

_ (Cz/az) t1 ;
B/C = (bz/az) +1

so that if we can show b/c > 1, thenC>B. But from Equation 60 ¢ = a(1-f). This result with that
from Equation 96 will give

o

1-e . e
c T ey . T 1if-g>a
<1—§)(1—f)

(from Equations 93 and 94). This final result establishes the absolute order of the moments of
inertia (for a homogeneous ellipsoid) as

A<B<C, (98)

and for the actual earth, as leastA <B, C.

VII. THE LEVEL SURFACES OF THE GRAVITY POTENTIAL
OF THE EARTH TO FOURTH ORDER

The form of the potential function in Equation 56 {and the magnitude of the second-order coef-
ficients) suggests the interpretation that the earth attracts principally as a sphere (homogeneous
in spherical shells). The higher order terms may be interpreted as arising from small mass de-
viations in the principal spherical model. At the surface these deviations are reflected as slight
corrugations in latitude, longitude and radius above and below the surface of the average earth
sphere. In particular, the previous development has shown how the principal term together with
the J,, and J,, harmonics and the centrifugal potential describe an earth with an equipotential
surface as a triaxial ellipsoid only very slightly deviating from a spherical shape. In the following
discussion the surface deviations from an average earth sphere of radius a (chosen for convenience)
due to the higher harmonics will be considered. The deviations will be such that they give an
equipotential surface for the particular harmonic. The actual equipotential surface of the earth is
then composed of the higher harmonic deviations superimposed on the second order triaxial el-
liposid described in the previous section. Higher harmonics to the fourth order will be considered.

From Equation 42, since ¢-¢b,, TA-A,F, =F, 90 and F), = 0 as discussed in Sections V
and IX, the geopotential through the J +4 term with respect to geocentric-geographic coordinates
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ryL, A measured east from Greenwich (Figures 2 and 4) is:

M _ —
V. (geocentric-geographical) = | [1 - (a/r)? a0 on (sinl) - (a/r)? 1., P22 (sinLl) cos 2()\ - >\22)

| - (a/1)3 J;, Py (sinl) - (a/r)3J,, P % (sinL) cos (A -A,))
= (a/1)3 J3, P (sinL)cos 2(A - A3,) ~ (a/r)? J,, P3 (sinl) cos 3(A - A, )
-(a/t)* J4o P, (sinl) - (3/r)*J,, P % (sinl) cos (x—x“)

~(a/1)* J42 P} (sinl)cos 2()‘—)‘42)‘(5/r)4]43P43 (sinL)cos3(?\—/\43)
'(E/r)“J“P:(sinL)cosl&(}\—)\u)] , (99)

where

d™ P, (sinL)
Pz d(sinL)™ cos”L

The A»__ above represents the geographical longitude of the principal plane of longitudinal symmetry
for the nm harmonic.

Equation 99 is Equation 42 with the coef- PROJECTION ON

ficients rewritten to conform with the J__ coef- EQUAF.TC()'T??;# &kAS':)E OF
ficients of Equation 56. The P are the H,__ of MINOR X 3

Equation 36 without the coefficient D,,. With the EQUATORIAL T *
selection of the reference coordinate system as AX X, E:} MERIDINAL PLANE
explained in Section V, the 1/r? term in the T we OF SYMMETRY WITH
potential and the J,, term have been ignored. ESPEﬂRL\%mé ,f,,RAV'TY
Depending on the actual choice of geocentric-

geographical coordinates of radius and latitude 3 > Pamy .
usedin a given application, reported coefficients R ‘o 3 EQ{"/\:TJggIAL
for Equation 99 may vary slightly. For example AXIS

if a calculation is to be run with Equation 99 in St

geographic coordinates referenced to the north Egg’xgg’a’- E;LS':E 4’&»,0'1"1/,0&

pole and an earth center on the equatorial plane,  TRIAXIAL ELLIPSOID &%

the reported coefficients would appear to be

logically in order if the model used to derive NOTZS_‘%MZ N

those coefficients used the same references.

However, since the north pole experiences small  Figure 4—Longitude relationships in the gravity potential
anomalous motions which are generally not :g:fi;\e earth with respect to the elliptical equator of the
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corrected for in the calculations, very small discrepancies may still logically exist between other-
wise correct sets of coefficients. More basic still is the consideration that the uncorrected polar
spin axis is not quite an axis of principal moment of inertia for the earth. For calculations using
an equatorial center and latitude with respect to the spin pole, a "best’ set of coefficients should
include the J, term (see Section IX).

In what follows the potential of Equation 99 is referred to an origin at the ¢c.m. of the earth
and the north pole spin axis, which is assumed to be a principal axis of inertia for the earth.

Table 1 gives longitude coefficients (]
by geodesists from 1915 to 1964.

A..» m 7 0) for the expansion Equation 99 as reported

nm?

The following material in this section describes how this so-called spectral representation of
the field can be translated into a spatial representation of deviations on the mean earth geoid.
Summing up each harmonic spatial deviation of the geoid finally gives the actual sea level surface
described by that particular set of harmonics. Figures 16 through 23 give the actual sea level
surfaces for some of the more recent longitude geoids in Table 1. The zonal harmonics (J,4, J;,>
J,0) have not been reported in this table for each investigation since they do not influence deviations
of the geoid along any given latitude circle. Figures 16 through 23 show that the full surface
equipotential contours are sensitive to these harmonics however. The reference geoid in each case
has a flattening of 1/298.2 which includes the deviatory effect of the centrifugal potential and the
oblate gravity term J,, (Section VI). Though not listed, all of these recent geoids (Figures 16 through
23) report J,,, J;, and J,, values little different from the set given by Y. Kozai in Table 1 (also
Reference 7):

J,0 ° 1.08248 x 1073
J30 = -2.6x 1076
Jeo = -1.84x 1076 .

A truer comparison of the geoids in Table 1 can be gained through the integrated spatial repre-
sentation such as Figures 16 through 23. This is because it is the full field at various locations that
is actually measured in any investigation. This representation illustrates the fact that relatively
minor spatial differences can give rise to large spectral differences term-by-term. It also points
up the necessity of considering the reported spectral coefficients as a set in any application, at least
for the relatively ill-determined longitude ones. Considered as a set, or spatially, it will be seen
that most of the recent geoids agree rather well in overall features. In theory the spectral effects
are well separable (as in practice they have proved to be for the zonal terms). In the longitude
reductions to date, the data has been too lacking in quantity and quality to allow meaningful separa-
tion except perhaps by order of magnitude. The one exception to this state of affairs is in regard
to J,, (see Reference 11, for example). Nevertheless, on the basis of the spatial representations
of Figures 16 through 23 derived from different kinds of gravity data, it is possible to delineate a
number of large area features over the earth (sensitive to the longitude harmonics) which appear in
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(5)
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(16)

17
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cemmon. One or more of these common longitude-sensitive undulations of the geoid can be said to

exist with the same certainty as the mass deviations responsible for the so called ''pear-shaped
earth.”

Table 2 lists ten such common features seen in the spatial representations of Figures 16
through 23. It is noted that only two appear to be absolute in the sense of standing out strongly on
all the geoids (see Table 2A). The reader is welcome to try his own eye for comparative land-
scaping in these figures. Perhaps the feature called "the middle American low" ought to be com-
bined with "'the central Pacific and central Atlantic low'" features to distinguish a more common

strong tendency of these geoids. The same might be said of '"the Afro-European" and "the Afro-
Antartic" highs.

Table 2

Longitude Geoid Features (see Figures 16-23).

Geoid (Figures 16-23) Eastern Hemisphere Western Hemisphere

ﬁ:ﬁzefceii:rf A Ao | At | Indian Micronesian | Austo- [ Central | South | Middle | Central

PLas  Hantartic | Evropean | Ocean | MICFONeSION | Aniartic laskan | pocific | American | American | Atlantic
noted.) High | High | Low | T Low | Mioh | Low | High Low | Low
Izsak (1964)* Vv ? Vv v Vv ? v v ? v
Guier (1963) Vv v Vv Vv v ? ? Vv
Kaula (Sept. 1963) Vv v v v Vv ? ? ?
Izsak (1963) v v Vv v v ? v ? ?
iiatvorcll I R y > VA y v
Kozai (1962) Vv v v v v v v ? v
Uotila (1962) ? v v Vv Vv ? Vv v v ?
Kaula (June 1961) v v v v v ? ? v ? v
*See Reference 10.
Table 2A

Longitude Geoid Features in Order of Common Strength.
. Indian Ocean Low

1
2. Micronesian High

3. Afro-Antartic and Afro-European High
4. Austro-Antartic Low

5. South American IE}_I

6. Central Pacific - Central American - Central Atlantic Low
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The deviations giving rise to the terms of Equation 99 are described below. .

a. Deviations of the Spherical Equipotential Surface Associated with the J,, Term of the
Gravity Field of the Earth

To consider the effect on the average earth sphere (of radius about equal to a) of just the J,,
term in Equation 99, we write the potential of that sphere modified by the j,, deviation as

J
vV o= (3“—{1—<a/r)2%° (3sin2L—1)} . (992)

According to Y. Kozai in Reference 7, J,, = 1082.48 X 10°%. The deviations from the average
sphere are referenced to latitude L = £35.2° since the deviatory part of Equation 99a goes to zero
there. Thus when L = 35.2° in Equation 99a, r = a. The equipotential surface for Equation 99a
then has a potential of constant amount G/a. The condition equation for the equipotential surface
due to Equation 99a is thus:

M GM a/r)?
= = T{l - %’—)— J20(3sin2L—l)} : (99b)
Let
r = atlbr,, |, (99¢)
where
Ar,, << a

Next introduce a +4r,, into Equation 99b and solve for Ar,, to get

J
Aryy = -3 5 (3sin?L-1) . (99d)

The zeros of Equation 99d are at L = +35.2° (see Figure 5). Extreme radial deviations due to J,,
are attained when

dAr .
"—0 —_— o
dL2 = 0 = -3 512214 v or when L = 0° and #90° .

The extreme radial deviations at these latitudes are

(Ar20)min = -aJ,, (at the poles)

= -6378 x 1082 x 1078 = -6.90km. = -4.28 st. miles;
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and

aJs0
(ArZO)max = 2

(at the equator)

% 2.14 st. miles (Figure 5).

The deviations in Figure 5 are strictly
gravitational. When the surface rotational p
tential of the earth is considered as well, an
equipotential surface with the approximate shape
of a biaxial ellipsoid is the result (ignoring
much smaller higher order effects)asSection VI

showed.

NORTH

(MIN, 4.28 ST. MILES)

Aryg<0

// /ffix " /

mmn

35.2°

0°

-35.2°

Figure 5—J,, deviations from an average earth sphere
from a potential from Reference 7.

From Equation 60 the polar radius c of the oblate earth spheroid is given in terms of
the flattening f and the mean equatorial radius aas

c =

a(1-f) .

The difference, then, in polar and equatorial radii for the oblate earth spheroid (often used as the
ellipsoid of reference for the earth or the "geoid") is

a-c¢ = a(l+f-1) = af =

6378/298.2 (from Equation 93) = 21.4km .

Thus, the maximum deviations of the oblate earth spheroid from the average earth sphere are of

the order of 21.4/2 =

10.7 km = 6.65 st. miles when the rotational potential is considered as well

as the deviatory part of the gravitational potential. This latter result is consistent with the maximum
and minimum equipotential deviations calculated above for just the gravitational part (due to J,,).

b. Deviations Associated with the J,, Term of Equation 99

(According to C. A. Wagner in Reference 11, J,, = -1.9 X 107%, »,, = -20°) The J,, deviatory

geopotential term in Equation 99 is

(Vo)zo =

—3(]22)(5/r)2 cos?L cos 2(A - >\22) .

(99e)

Proceeding as in the case for the deviations giving rise to the J,, term, we arrive at radial devia-
tions from the surface of the average earth sphere of radius a given by

Ar“ =

The zeros of Equation 99f are at L = +90° and at every latitude where \ = A,

(Figure 6).

-3aJ,, cos2 L cos 2(>\— >\22)

(991)

£45°\,, +135°

’22
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N EAST Extreme deviations due to J,, are reached

when
Agp +45°
9hry,
dL = 0 = 35]225in2L0052(}\—>\22)
Ar<0
(MIN, -119") . and,
(3aJ3)
dlr
-3‘5\2_2 = 0 = 65]22C0s2Lsin2(>\'}\22)

Figure 6—J,, deviations of the mean earth sphere for

i ly. Th ini deviations
J,, <0, from Reference 11. simultaneously ese minimax

occur (other than at the poles which are inflec-

tion points where Ar,,= 0) at the equator at longitudes wherex = x,, ,A,, +90°% A,, + 180°. The
absolute magnitude of these extreme deviations is
|8y, (max.)| = -38J,, = 3x 6378 x 1.9x 107® = 36.4 meters

= 119 feet .

This corresponds to a difference in major and minor equatorial radii of 238 feet. Compare this
with Equation 97 (also see Figure 6).

¢. The Deviations of the Surface of the Earth Associated with the
J 4, Term of Equation 99

The effect on the average earth sphere, whose radius is about equal to a, of just the j,, term
can be calculated when the potential of that sphere is modified by the J,, deviation to give

J
vV = % {1 - (a/r)3 ~3—° (s sin3L-35'1nL)] . (100)
(According to Y. Kozai in Reference 7, J;, = -2.6 X 107%.) The deviations from the average sphere

will be referenced to the equator since the deviatory part of Equation 100 goes to zero there. Thus,
when L = 0, r = a in Equation 100. The equipotential surface for Equation 100 thus has constant
amount GWa. The condition equation for this equipotential surface is then

J
% - o [1 - (@) 5 (5s1n3L—3s'mL)] - (101)
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When Equation 101 is rearranged to solve for r, it becomes

-J
(c/ayt - (r/a)* = —5° (5sindL-3sinL) . (102)

Let r =@ +ry, where Ar,  <<a. Then, to the first order in Ar/a, the left side of Equation 102 be-
comes Ar/a and Equation 102 is written approximately as

. ajJ
Arge = - ;o(Ssin3L-3sinL) . (103)

The zeros of Equation 103 (besides L = 0) are at L = £50.7°. Furthermore, 4r_, < 0, 0<L<50.7°and
-50.7° <L <-90°% 4r,, > 0 everywhere else (see Figure 7).

Extreme radial deviations are attained when

AR

Ar <0
(MIN, 24')

dL = -3 (15sin?LcosL-3cosL) = O . (104)

The zeros of Equation 104 (besides L = 0) are at L = +26.6° and at
L = +90° > ~%r

When the value of a in Equation 91 and J,, as quoted above are used, . Lo
3 s Figure 7—J ;¢ deviations
Ar exireme, calculated from Equation 103, is equal to 24 feet at L = +26.6 (Reference 7).
and 54 feet at the poles (Figure 7).
d. Deviations Associated with the J,, Term of Equation 99

The J,, deviatory geopotential term is

I3, (a/1)3 %(15 sin?L-3) cosLeos (A -A ) .

By proceeding as in the case for the deviations giving rise to the J,, term, the radial deviations
from the surface of the average sphere of radius a2 can be shown to be

J
Arg, = —E‘—;l (15sinzL-3)cochos(>\—>\3l) . (105)

The zeros of Equation 105 are at

L = 190° (all longitudes)
L = £26.6° (all longitudes)
A = 90° + A,y and 270° + Ay, (all latitudes) (Figure 8).
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»

Extreme deviations due to j,, are reached when
Ary, (ABSOLUTE MIN.) =1.758] 3

BArsl
Az dL

= COS(/\_>\3‘) [— (ISSinZL—3) sinL

26.6°
AVZOS Ars0 +30sinLcos L:l = 0 ,(106a)
-26.6°
and
Ary, (RELATIVE MAX. ) =-1.5aJ3
dlr,, _
Figure 8=J ,, deviations for J,, < 0 (Appendix A). CLN - sin( - Ay )(15sin? L - 3)cosL = 0.

(106b)

The simultaneous solution of Equations 106a and 106b yield two sets of extreme deviation points
across the average sphere. One is at the crossing of the "'nodal lines" of Figure 8 where Ar is
zero. These are evidently flat points of inflection for the equipotential surface due to J;, . The
other set is at the intersection of » = A, and 180° + »,, with L = £70° and 0°. Four of the six
extreme points of this set yield the same absolute deviation of -1.75 2 J,,. The other two yield
identical absolute deviations of -3a J,, /2 (Figure 8).

e. Deviations Associated with the J,, tevm of Equation 99

The J,, deviatory geopotential term is

~J5, (a/t)3 15 cos? LsinLcos 2( - A,,) ..
Deviations are calculated as in 4. above, and

Ary, -aJ;, 15 cos?LsinL cos 2(>\—>\31)

(107)

with the results appearing on Figure 9 below.

J. Deviations Associated with the J 23 Term of Equation 99

The J,, deviatory geopotential term is

EAST
~J33 (3/1)* 15 cos® L cos 3(A_>\33) Ara (MIN-) 22889052 Agp + 452
Deviations are calculated as in 5. above and 0°

Ary, © -aJy;15cosdLeos 3(N-A,,) (108)
with the results appearing in Figure 10 below.
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Ary, (MAX.) =-2.88aJ5,

Figure 9—J,, deviations for J;, < 0 (Appendix A).



g. Deviations Associated with the
J,, Term of Equation 99

o

The J,, geopotential term is

J40 (a/r)? [%i sin? L - 30sin? L+3] .

(According to Reference 7, J,, = -1.84X 1076 )
Deviations are calculated as in a. above and
Or,y = -al,, (%5 sin*L-30sin2L+ 3)(109)

with the results appearing on Figure 11.

h. Deviations Associated with the

J,, Term of Equation 99

The j,, deviatory geopotential term is

Y4y @)t (%—)(140 sin’L

- 60 sinL) cos L cos (A -A,,).

Deviations are calculated as in d. above, and

OArg, = —EJ“(%-)(MOsin:’L

-60sinL) cosLcos (A -A,,). (110)

with the results appearing in Figure 12.

Ar(MIN.) =154

'

Ar(MAX.) =-158)3

Figure 10—J ,, deviations for J,, < 0.

Figure 11—J 4 deviations

(Reference 7).

Ar 4 (ABSOLUTE MAX. ) =-2.63d 1

7’

A4 +180°

40.9°
00

- 40.9°

Ar 4 (RELATIVE MIN. ) =1.813J

Figure 12—1],, deviations for J,; < 0 (Appendix A).

i. Deviations Associated with the J,, Term of Equation 99

The J,, deviatory geopotential term is

T4y (@/1)* (%)(420 sin? L-60)cos?Lcos 2(A -}, ,) .
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A SOLUTE MAX.) = -9.63 . .
rgy (AB ) 1o Deviations are calculated as in d. above, and

Nig-45°
22.2° — 1
Ar,, = —aJ42<§)(42OSin2L
-22.2°
§ z —60) cos?L cos 2(>\—>\42) (111)

¢y (RELATIVE MIN.) =7.58 1 with the results appearing here on Figure 13.

Figure 13—J,. deviations for J,. < 0 (Appendix A).
9 a2 42 PP ) j. Deviations Associated with the

J,; Term of Equation 99
Argy (MAX.) =-34.13) 4
The J,, deviatory geopotential term is

60° + X 4
“J45 (a/1)* ( )8403mLcos L cos 3(>\ Ny )
/& Deviations are calculated as in d. above and

Argy (MIN,) =34.1a),,

— 1
Or = -a]j 840 sinL cos® L cos 3(A - A
Figure 14—J . deviations for J,, < O (Appendix A). 43 * ('8‘) ( (14132))
with the results appearing here on Figure 14.
Bry, (MAX.) =-105a],,
Ayt 67 1/2°
k. Deviations Associated with the
J,, Term of Equation 99
The J,, deviatory geopotential term is
_ 1
(MIN.) =105aJ,, “J4q (37D (g> 840 cos* Lcos 4(N - A,,)
Figure 15—J, deviations for J,, < 0 (Appendix A). Deviations are calculated as in 4. above and
A = -3 ( 1 ) 4 PNEDN
foe = -3l \g) 840 cos*Lcos4(r-r,,) (113)

with the results appearing on Figure 15 above.

The complete geocentric-geographic gravity potential of Equation 99 with the zonal coefficients
as reported in Reference 7 and J,,, *,, as given in Referencell is given below. The longitude ()
reference is Greenwich with positive angles to the east. The radial (r) reference is the center of
mass of the model earth. The latitude (L) reference is the equatorial plane of the model earth

36




paSsing through the c.m. and the north pole spin axis. Thus the spherical harmonic representation
of the gravity potential of the earth through fourth order takes the form of

me
Vo, = —+ [1 - (1082.48x 1079)(a/r)? (%)(3 sin2L-1) - (-1.9x 1078)(a/r)2 3cos2 L cos 2(A + 20°)

- (-2.56x 107%) (a/r)? (%)(5 sin®L - 3sinL)- (J;,) (3/1)® (%) cos L{15sin2 L~ 3) cos (A ~A,,)
-(J,,) (3/r)3 15cos2 LsinLcos 2(A - A, ) - (J,.) (3/r)® 15cos® Lcos 3(A - A
32 32 33 33
- (-1.84x1076) (a/r)* (%)(sin‘ L-30sin?L+3)- (J;,) (/r)* (%‘)(1405in3 L-60sinL)cos(r -A, )
= (Ja,) (@/1)* :] 420 sin? L -60) cos2Lcos 2(A - A,.) - (J..) (a/r)* L 840 sinLcos® Lcos 3(A -\
42 8 42 ( 43 8 43
1
“{JTaa) (a/r)“(g) 840 cos* L cos 4\ —A“)] . (114)

with a = 6378.165 km.

GM, = 3.98603 x 105 km®/sec?

e

+90°
1 80°

+60° |

+40°

+20°

pe i

-20°

g

-80°
-90°
- 180° - 140° -100° -60° -20° 0° +20° +60° +100° +140° +180°

Figure 16—Satellite-Camera geoid from lzsak, 1964 (Reference 10) (Level curves of geoid heights
at 10 m intervals with respect to a reference geoid of flattening 1/298.2).
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Figure 17—Satellite-Doppler geoid from Guier, 1963 (Table 1) (geoid heights in meters).
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Figure 18—Satellite-Camera geoid from Kaula, 1963 (Table 1) {geoid heights in meters).
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Figure 20—Satellite-Doppler geoid from Anderle and Oesterwinter, 1963 (Table 1) (geoid heights in meters).
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Figure 22—Gravimetric geoid from Uotila, 1962 (Table 1) (geoid heights in meters).
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Figure 23—Astro-geodetic and gravimetric geoid from Kaula, June 1961 (Table 1) (geoid heights in meters).

VIil. THE GRAVITY FORCE FIELD OF THE EARTH THROUGH FOURTH ORDER

To display the gravity force field of the earth in geocentric coordinates referred to the earth's
spin axis, we follow the general prescription that with respect to any orthogonal coordinate system

F(gravity) = W_(gravity) (115)

(see Section II and References 1 and 2).

The results of taking the gradient of v, from Equation 99 gives the force field of the earth
through fourth order as

av R 9V, [ av

- R v, .
F = FF'+)\F/\+IFL = VVe = rF+——rCOSLT3X—+raL , (116)
where
He _ 3
Fo= '1._2_{-1“&("/")2 [7]20 (3sin2L-l)+9J“coschos 2()\—>\22)

+ Z(E/r)J:m (5 sinzL-3) (sinl) +6(Ro/r)]3l (S sinzL—l)cochos(A—x“)
* 60(a/r) J;,cos2LsinLcos 2(A-A3,) +60{Ry /1) ], cos® Lcos 3(A -1A,,)
+ 3 (3/1)2 T4 (35sin*L-30sin?L+3)+ 3 (3/r)? T4 (7sin?L-3) cosLsinLecos (A-4,,)

+ 12§ (3/1)2J4,(7sin?L-1) cos?L cos 2(X-Xr,,) +525(a/r)2 J,,cos® LsinLcos 3(A -~ Aq3)

(117)

+ 525(a/r)2 J,, cos* Lcos 4(A - A };
(a/1)% J44 cos S ( 44)] 41



H 3 _ . .
Fy = _;; (5/r)2{6J22 COSLS.‘"Z()‘_An) +5 (a/1) T 5, [5 sin? L - 1] sxn(,\~,\31)

+ 30(a/r) J3, cosLsinLsin 2(>\—>\32) +45(a/r)J,, cos?Lsin 3(A - Ay;)
+ %(E/r)2 Jai[7sin?¢ - 3]sinLsin(h - A,,) +15(a/1)2 J,,{7sin2 L-1) cos ésin 2{A - A,,)
+ 315(a/r)? J4; cos? LsinLsin 3(A - A,5)

+ 420(a/r1)? Jea cos3Lsin4(/\—)\44)} . (118)

HE
F, = —r—z(E/r)2 {“3]20 sinLcosL+6J22cosLsinLcosZ()\—A“)

- % (8/1)J30 (5sin?L-1) cosL+-g- (3/r) J4, (15sin? L - 11) sinL cos (A = A4y)

+

15(a/r) J;, (3 sin?L-1) cosLcos 2(A -4,

5 _ . .
45(3/r) Jy3cos?LsinLcos 3(A—>\33) -3 (a/r)? J 40 (7 51n2L—3)sancosL

+

% (a/r)? Jg, (28 sin*L - 27 sin? L + 3 ) cos (A—}\“)

+

+

30(a/r)? J,, (7 sinzL—4) cosLsinL cos 2()\ —>\42)

+

105(a/r)? Jas (4 sin?L - l)coschos 3(>\—>\43)

+

420(a/r)? J,4 cos? LsinLcos 4_(>\~A“)} 4 (119)

The earth gravity force field given in Equations 117 - 119 and the potential field given in Equa-
tion 99 are with respect to geocentric spherical coordinates fixed in the earth, referenced to its
spin axis (the north pole) and its center of mass (Figure 24).

It is instructive to note the relative influence of the orders of earth tesseral gravity at different
altitudes above the earth’s surface. In general the higher one goes, the more the earth behaves as
a point mass with a 1/r? field. Physically, this asymptotic behaviour must occur because at in-
creasing distances from the earth, the distances to each point in the earth from a fixed outside
point become more nearly the same. The field of a single mass point in the earth is, of course,
just a simple 1/r? field. But in addition to this total behaviour since each order of gravity, mathe-
matically, has a scaling factor of (a/r) with respect to the next lowest order; this means that as the
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distance (r) from the earth increases the lower
orders of gravity play an increasingly stronger
role.

This might be anticipated from thefact that
the lower orders of gravity measure mass
anomalies within the earth which have wider
Separation. At increasing distances thc mass
anomalies distributed with close separation,
are at more nearly the same distance from the
outside field point than the more widely sepa-

rated anomalies of lower order.

F(GRAVITY
FORCE)

MEAN EQUATORIA(
RADIUS OF THE
EARTH

4
Llg 5 / g
P[ANERI,qL \Q /
PRINCIPAL MERIDIAN

OF SYMMETRY FOR nm
GRAVITY HARMONIC

Figure 24—Earth-fixed geocentric coordinate system
reference for the earth's gravity field.

Thus, these higher order gravity anomalies should have a less and less influential role in the
total nonhomogeneous earth gravity field as the distance increases.

Figures 25 to 27 illustrate this phenomenon with respect to a recent geoid due to W. M. Kaula
(Kaula-combined [1964] in Table 1). These graphs are a plot of the equatorial longitude force field

ALTITUDE:
200 MILES
2.0 -

LONGITUDE PERTURBATION (10-3g)

~2.0 p—

FULL 4th ORDER FIELD PERTURBATION

g=RADIAL EARTH FIELD AT
200 MILES

1. {

180 270 360

GEOGRAPHIC LONGITUDE (degrees)

Figure 25—Equatorial longitude gravity forces at 200 miles from the composite geoid of W. M. Kaula (1964).
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ALTITUDE:
1000 MILES v

FULL 4th ORDER FIELD PERTURBATION

1.0 -~

LONGITUDE PERTURBATION (1073g)

g=RADIAL EARTH
FIELD AT 1000 MILES

1 ] 1
0 90 180 270 360

GEOGRAPHIC LONGITUDE (degrees)

Figure 26—Equatorial longitude gravity forces at 1000 miles from the composite geoid of W. M. Kaula (1964).

ALTITUDE:
6000 MILES

FULL 4th ORDER FIELD PERTURBATION

LONGITUDE PERTURBATION (10” 6g )

o L ] . |

0 90 180 270 360
GEOGRAPHIC LONGITUDE (degrees)

Figure 27—Equatorial longitude gravity forces at 6000 miles from the composite geoid of W. M. Kaula (1964).




ALTITUDE:
22,000 MILES LONGITUDE PERTURBATION
IN FULL EARTH FIELD TO 4TH ORDER
OF KAULA - COMBINED (1964)

L)

2 -2
\
LONGITUDE PERTURBATION /
B IN 2ND ORDER FIELD //4
! ONLY OF KAULA-COMBINED 4 1!
(1964)
0 f—

g, = 0.735 ft/sec?
(Radial earth - gravity acceleration
at " synchronous altitude ")

—-2

EQUATORIAL, LONGITUDE -GRAVITY ACCELERATION (10'7 g,)

0 %0 180 270 360
GEOGRAPHIC LONGITUDE (degrees)

Figure 28—The earth's longitude gravity field on the equator at the synchronous altitude,
according to geoid (2), (Table 1).

given by Equation 118 at various altitudes for the longitude coefficients of this geoid. They indicate,
for example, that orders of longitude gravity higher than the second order can probably be safely
ignored at almost all longitude locations with respect to their influence on the high altitude 24-hour
satellite compared to the influence of second-order longitude gravity. On the other hand, they
probably cannot be safely ignored with respect to their comparative influence on satellites orbiting
below 6,000 nautical miles. Figure 28 strongly suggests that the recent determination of J,, from
24 hour satellite data (References 8 and 11) should be a relatively secure one.

Figure 29 illustrates the relative imprecision with which the full longitude gravity field of the
earth at 24 hour altitudes was known prior to the direct measurement by its effect on the Syncom II
satellite (see References 8, 11 and 15).

IX. ON THE ORDER OF MAGNITUDE OF THE EARTH GRAVITY PERTURBATION
DUE TO SMALL WANDERING OF THE SPIN AND AXIS OF FIGURE OF THE EARTH

In Section VII it was pointed out that there aretwo consequences from the fact that the earth's spin
axis is not quite a principal axis of inertia. In the first place it implies from dynamical considerations
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Figure 29—Full field earth longitude gravity forces (perturbations) around the equator
at 24 hour altitudes (19,300 n.m.) according to three recent geoids.

that the north pole, the instantaneous spin axis, must wander with a periodic motion and with small
amplitude both in inertial space and with respect to the body of the earth (Reference 5). This effect
must be present even in the absence of external torques on the earth, which, of course, can be ex-
pected to exaggerate it. Such a short-period wandering of the pole (not to be confused with the

long 26,000-year period of general precession) has in fact been known to astronomers for some
time (Reference 5, p. 383). The largest component of it appears to have a period of about 440 days
and an amplitude of about 13 feet with respect to the surface of the earth. The fact that physically,
the pole is not in the same place on the earth from instant to instant means that there is a small
periodic latitude variation in the stations used for determining the potential of the earth. Such a
small variation in latitude cannot mean a significant change in earth potential constants between
sets reduced from data at different stations at different times or the same station at different times,
because these constants are by far more sensitive to the radius from the center of the earth than
any other coordinate. Nevertheless, a 13 foot arc at the earth's surface is 85 feet at synchronous
altitudes and within the discriminating power of Doppler range and range rate orbit determination.
This geometric effect of the consequence of the pole's short period wandering has not heretofore
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been included in satellite determination programs or in geodetic applications from them. The

earth constants themselves (as will be shown shortly)cannot be significantly affected by this small
pole wandering. Putting it another way, physical perturbations, as distinct from the geometric
effect above, from the slight wobbling of the spin axis will also be shown to be small. Nevertheless,
the geometric effect appears to be of sufficient magnitude to be determinable from observations of
satellites. This effect might be discriminated in an orbit determination program which has the
capability of correcting for the latitude error (on a time basis) in the coordinates of the observation
stations. Such information on the details of short-period, pole wandering would be of great value

to geodesists in interpreting the physical nature and behaviour of the interior of the earth.

We now assess the magnitude of the gravity potential term which arises only when one uses the
instantaneous spin axis as a coordinate reference and not the true "axis of figure' for the earth (its
principal axis of inertia).

Consider in Figure 30 a polar section of the earth containing this true "axis of figure.”

Instantaneously, the axis of figure of the earth X,’ is separated by y from the polar axis X,. It
is shown below that the gravity effect of this "tipping" of the reference spin axis is proportional to
the product of inertia of the earth with respect to the spin axis and the tipped equatorial axis X,
(evidently close to zero since y is always very smali).

In Figure 30 note that dm, £,, $;, £, and £, are all in a plane parallel to the X', X, plane.
The product of inertia of the earth with respect to the spin axis, X,, and the tipped equatorial axis,
X,, is

J‘ £,€,dm .
D

. AXIS OF FIGURE INSTANTANEOUS

SPIN AXIS (CLOSE
TO THE ANGULAR
MOMENTUM AXIS
OF THE EARTH)

From the figure it can be seen that

ELLIPSE

CENTERED
£, = 52’ cosy — £, siny ON X3, X%
£y = &) siny + &) cosy (120)

since the X,, X, axes are rotated by » in the

polar section with respect to X, , X,’ .

For purposes of simplicity (and with es-
sential accuracy) the earth is assumed to be a
biaxial oblate ellipsoid in this argument so that

(X], X2, x3)

£,£2.£3,63 ARE ALL

IN A PLANE PARALLEL Do (DOMAIN OF THE EARTH)

every polar section (as in Figure 30) contains
the second axis of inertia (X, ) with respect to
which the moment of inertia of the earth is B.

TO X3, X5 PLANE

Figure 30—Polar section of the earth containing
the axis of figure.
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From Equation 120 the product of inertia of the earth with respect to Xy X, is ’

1

J £,&,dm j (§2' cosy— &5 siny)(§2'siny+§’3' cos’y)dm
D D

e e

3
= cosysiny{j (§2’)2dm— f (53’)2 dm}
D D,

e

+J £, &, dm{cosz'y~sin27} - (121)

D

e

But since, in this argument, X,’ is a principal axis,

J £, 6y dm = 0
D

e

and by definition
and

Equation 121 therefore reduces to

I £,€,dm © %(C—B)sinzy . (122)
D

Additionally, it is shown below that the products of inertia with respect to axes X,, X, ( j;) £, ¢, dm)
and X,, X, (fn, £, €, dm) are both zero. (Not shown in Figure 30 are the X, and X/’ coordinates of dm
which are ¢, and &' respectively.) These results hold for this argument because from Equation 120
and the fact that &, = ¢,

51 §2 = §2: gll cosy ~ §3/ éll sinvy

1€y T &) &) siny F £ € cosy
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Since X', X,’, X;' are principal axes of inertia,

C) >
Uy
-
Uy
~
|

cosyJ é,’fx’dm-sin’yj‘ £y & /dn = 0 (123)
D D

e e e

and

it
[=]

j’ £, & dm = sinvj £, £y dm+cosyf £, &, dm (124)
)} De De

Other moments of inertia with respect to the 5(1, X,, X, axes, important in what follows, can be
similarly shown to be:

L [(€)2+ (&3] dam = B+ (C-Bysin?y | (125)
[ ler-Eram - . 126)
ID [(§1)2+(§2)2]dm = C - (C-B)sin?y . (127)

e

We now return to the main argument. When the earth was referenced to its principal axes of
inertia, it was seen that the moment of inertia of the earth about the line to the field point reduced
simply to Equation 20b or

I, = [A(xl)2+B(x2)2+C(x3)2]/r2

However with X, X,, X, no longer principal axes, but rotated in the manner of Figure 30 with
respect to the principal set X', X,/ , X, , this line moment of inertia becomes, from Equations 20a
and 122-127

LR S '(X1)2B + (x,)2 [B+(C-B) sin?y ] + (x,)? [c-(c-Bysin?y] - X, X, (C-B)sin2y .(128)

The moment of inertia for the biaxial earth of this simplified argument with respect to its c.m.,

1, = %(A+B+C) - %(ZB+C) = %[2B+C][(x1‘)2+(x2)2+(x3)2]/r2, (129)
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is still given by Equation 20c since it is independent of the coordinate reference. When the argument
leading to Equation 48 is repeated, but with respect to these altered axes, Equations 128 and 129 in
(47a) give

C 3 2B 3
- ("1)2[23;r —_213] (x2)2[ 2+C”7{3+(C‘B)Sir127}]

+ (x,)2 [QB;C - %{c—(c—B) Sin2y}] + %[x2x3 (C-B)sin2y].  (130)

It is to be understood that the longitude reference (the X, axis) has not changed in the particular

pole tipping of Figure 30. Since the earth is almost a biaxial ellipsoid, one can always choose the
longitude reference axis arbitrarily or describe the tipping in this particular fashion. The physical
effects which follow should be the same as for an arbitrary pole migration except for a longitude phase
shift which would depend on the longitude as well as the latitude variation of the pole. Such a
variation could be described with respect to the Greenwich meridian through the axis of figure.

The gravity constants (F,o),, (Fy5)05 (Fz2)15 (F21)0s (F2,); in Equation 130 thus refer to axes
X,s» X;5 X, as in the argument of Equation 48. But now, since these axes cannot all be principal
axes, we have chosen X, and X, arbitrarily to simplify the description of the effect.

Equating coefficients of linearly independent terms on the right and left sides of Equation 130
as in Equations 49 - 54 gives the following:

—(Fzzo)o *+ 3(F,,)e ~ %(C—B) (131)

(Falo - 3(F,)e  Cpo - 3sin?y(C-B) = 3 (C-B) {1-3sin?s) (132)
(Fyo)o = B-C +%[sin27(C—B)] = (B-C) <1 —%sin2 7> (133)
6(F;5), = 0 (134)

2(Fyy)e = O (135)

2(F,,), -~ %(C—B)sin27. (136)
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~ From Equations 131 - 136 the gravity constants in terms of the moments of inertia with respect
to the axis of figure and the tip angle y are

(Fo)o = B-C) (1-3 sin?y) (137)
(Fi2)o = -;}(C—B) sin?y (138)
(Fpp)y = O (139)
(Fa)o = 0 (140)
(F,1), = %(C-B)sinbf (141)

Note that when y = 0, the results of Equations 137 - 141 are the same as Equations 49 - 54
with A = B. In other words, the effect of a small tipping of the axis of figure with respect to the
spin axis is to change J,, by the order of magnitude of sin?y, to change j,, by the order of magni-
tude of j,, sin? ¥, and to introduce an additional J,, longitude effect. All of these gravity effects
are very small and in most applications should be negligible, as will be seen below.

When Equations 43 and 56 are rewritten with respect to the non-principal axis set X,, X,, X,

. Foo 1 ¥y . 2 Fa 2 142
v, & -2 +:; —T(Ssxn L‘l)* 5 51n2Lcos(¢“¢“)+3Fzzc°S Lcos2(¢>—d>22) , (142)
and

.Y, J
v, 5 {1‘—3—"<a/r>2(3sin2L-1)-%<5/r>’iusin2L°°s(¢‘¢n)

—3_]22 (—a-/r)2 cos? L cos 2 (qb—qbzz)} . (143)

For the J,,, F,, coefficients, the identification of Equations 142 and 143 implies

3F,,  ~3a/r)?J, 3N,
2r3 2r ’
or
- Fa
Jor ° @ (3)? : (144)
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Similarly, the identification of Equations 142 and 143 gives

_F207

- (145)
aM, (3)2

Jao0 ~

Equation 140 in (46a) implies ¢,, = #/2 or 37/2 radians, which implies F,, = 2G(F21)1/3. This
result and that of Equation 141 give

F, - 339 [% (C—B)]sinzy
or from Equation 144
_ (C-B)sin2y
|T21] = M (3! (146)

Since F,, = G(F20)0, (see Equation 46a), from Equations 145 and137, j,, is given approximately by

o 147)
J20 Me (5)2 ( )
Combining Equations 146 and 147 gives
in2y - I
'lel = Jao Sﬁl—‘zw = Jy7 (148)
since v <<1. But
13’ B B
Y T (3960~ 5280)" ~ 0.62x 107°

(Reference 6, p 383) and J,, = 1082.5 X 10 ®. Therefore, from Equation 148

1T, 1 = 0.00067 x 1076 . (149)

Earth longitude coefficients |J_ | (from Equation 99 for example) determined by ignoring J,,
altogether, all appear to be greater than 0.01 X 10°¢ forn < 6 (Reference 12). It is clear
then that for orbit determinations which need inclusion of earth tesserals up to about the sixth
order, the physical effects of the small periodic wandering of the north pole are entirely negligible.
In fact, if J,, is arbitrarily set to zero, it in effect forces the latitude reference to be the true axis
of figure at any instant in an orbit determination which utilizes an earth potential such as Equa-
tion 99. In the torque-free nutations of the oblate earth the spin axis is always considerably closer
to the "invariable" angular momentum axis (the true inertial reference for motion with respect to
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the éarth) than the axis of figure. Therefore, the time based correction for station latitude and
longitude bias from observations of satellite motions will, assuming torque-free nutations only,
give almost directly the movement of the axis of figure in inertial space.
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Appendix A

Notes on Notation

It would appear that almost every author of geodetic investigations uses a difiereni notation or
definition for the constants in the gravity potential of the earth, for example, Reference A-1.
W. M. Kaula (Reference A-2) has reviewed these and has proposed a limited number of standard
forms useful in the applications and easily converted from one to the other. They are all based on
the form of the potential as it is written in Equation 99. As can readily be appreciated, it is
important that when using a potential in this form, the earth radius (a, for example) be clearly
defined and stated when constants are reported.

In one form the longitude constants (m # 0) are

Kom = “Tom - (A-1)
as written in Equation 99. By definition the J__ (m # 0) in Equation 99 are all negative. With this
definition the A __ are interpreted physically as in Figures 5 to 15 for both the K, and J_,, form for
the potential. There is no logical reason why one of these forms should not be dropped. Historically
(Reference A-3, for example) the J__ form of Equation 99 has always been used for the zonal

(m = 0) potential. It has only been fairly recently, to the author's knowledge, that the X , form

(with K__> 0 by definition) has been adopted for just the longitude part of the series. The author
feels that the form of the J, , series valid for all n and m in Equation 99 is a reasonable unifying
compromise of the historically different forms (J_ and X_,) for treating zonal and longitude gravity.
Again it is noted that the J__'s in the form of Equation 99 must always be negative so that the A,

in the J_ _ form refers to the same longitudinal axis of symmetry as in the K, form for the nm
harmonic. For example, if J,, in the potential series 99 were positive, this would mean that A,,
would locate the minor axis of the elliptical equator instead of the major axis as it does when J,,

is negative. In the Kk__ form of the potential it has been conventional to define K,, always positive

so that A,, locates the major equatorial axis. The simple assignment, j, = K, , preserves the
same physical interpretation of the A_, between the two forms (Figures 5 to 15).

The third standard form proposed by Kaula is a simple expansion of the K _ form for
longitude-dependent gravity. When the longitude-dependent part of the general longitude gravity term
is written as

K.. cosm(K—Knm) a (knm cosm)\nm) cosm\ + (knm sinmnm) sinm\

the two longitude constants for the nm harmonic can be defined as

C = K,pcosmh

nm

55




and

S = K _sinm\ (A-2)

With these new constants the harmonic potential series of Equation 99 is (Reference A-2).

7 2 &
v, = 'TF {1 + ZL (a/r)"PM (sinL) (Cnm cosmh +8__ sinmx)}- (A-3)

n=1 m=0

Alternately the k__, A _ form is

m

p = &
v, = —::{1 +Z (8/r)y" PP (sinL) K, cos m(x-xnm)} ; (A-4)
n=1 m=0
and the j__, »__ formis
. My N~
vV, = T{l —Z (a/ryn PP (sinL)Jnmcosm(K-Anm)} : (A-5)
n=1 m=0
The C_,, S,, form in Equation A-2 is often a convenient calculating form as the effects of the two

longitude constants are linearly separated in it.

From Equations A-1 and A-2 the connections between thek__, A, J, ., C,.., and S__ constants
are summarized as
Jnm = _Knm '
Jom = _(anm + Snzm) 1/2
_ 1 -1
>\nm T m tan (Snm/cnm) '
and
Knm =t (anm * Sn2m) 1 ) (A-G)

In addition to Equations A-3 to A-5 Kaula (Reference A-2) proposes a form of Equation A-3 which
defines the potential as

Fe > & _ s -
W D @ ien[gesm S anal) B
n=1 m=0

56




vihere

S — - (n+m)! 172
(Cnm’ Snm) [(n_m)! (211‘*1) (2_ Smo)] (Cnm' Snm)

with

It

50 1form B 0 (zonal terms)

and

Oform 7 0 (longitude terms) . (A-8)

1]

50

m

It can be shown (Reference A-4) that C,, and S, are coefficients of harmonics which have a mean
square amplitude of 1 over the geoid for all values of m and n. Thus, comparison of the order of
magnitude of the physical effects of the harmonics at any altitude is possible using (C,,,, S,,) values
modified by (a/r)” to account for the decrease in harmonic amplitude with distance from the c.m.
of the earth.
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Appendix B
List of Symbols
differentiai operator signifying a2/ax? + a%/dy? +9%/9z? inx,y, z rectangular coordinates,
for example

metric coefficient of the coordinate ¢, (dimensionless)

. general orthogonal coordinate

small line element in the direction of increasing q, only

spherical coordinates of radius, latitude and longitude with respect to the mass distribution
gravitational potential (units of energy/ mass)

separated variations of the potential; functions of radius, latitude and longitude, respectively

intermediate potential constants (units of energy/mass)

™ associated Legendre function of order n, power m

Legendre polynomial of order n
intermediate potential constants (units of energy/mass)

longitude of the principal plane of symmetry corresponding to the nm harmonic of the
potential of the mass distribution

universal gravitational constant (6.673 X 10-8 dyne-cm2?/gm?)

total mass of the distribution whose potential is desired (M,
the applications in this report).

M = Mass of the earth, in

moment of inertia of the distribution about the origin
moment of inertia of the distribution about the line vector r to the test point in the field

rectangular coordinates in inertial space aligned to the axes of principal moment of
inertia of the mass distribution

principal moments of inertia of the mass distribution

potential constant for the nm harmonic of the potential of the mass distribution (units of
energy/mass)
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a

average of major and minor radii of the elliptical equator of the model earth ]
polar flattening or oblateness coefficient of the model earth ellipsoid (dimensionless)
eccentricity of the elliptical equator of the model earth

half axes of the model earth ellipsoid (c is the polar radius)

f;éius to the surface of the model earth ellipsoid

rotation rate of the earth (units of angular velocity)

constant ari&o’unt of the potential at the surface of the model earth ellipsoid
centrifugal 'Ai‘)otential constant of the earth

geographical longitude measured east from the Greenwich meridian

deviation in radius from the surface of the average earth sphere of radius z to an
equipotential surface

intermediate ‘potential constants
domain of the mass distribution

distance from the field point to a point mass of a mass distribution

the distance from the origin of coordinates to a mass point in the domain of the mass dis-

tribution whose gravity potential is sought.

NASA-Langley, 1966




